Quadratic Algebras Related to The

نویسندگان

  • MIKHAIL BERSHTEIN
  • VLADIMIR DOTSENKO
چکیده

We prove the conjectures on dimensions and characters of some quadratic algebras stated by B.L.Feigin. It turns out that these algebras are naturally isomorphic to the duals of the components of the bihamiltonian operad.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ELEMENTARY PARTICLES AND FIELDS Theory Models of Quadratic Quantum Algebras and Their Relation to Classical Superintegrable Systems

—We show how to construct realizations (models) of quadratic algebras for 2D second order superintegrable systems in terms of differential or difference operators in one variable. We demonstrate how various models of the quantum algebras arise naturally from models of the Poisson algebras for the corresponding classical superintegrable system. These techniques extend to quadratic algebras relat...

متن کامل

Quadratic Algebras of Type Aiii

We study some quadratic algebras related to quantized matrix algebras. Our point of view is that of non-commutative algebraic geometry 1].

متن کامل

Fibered Quadratic Hopf Algebras Related to Schubert Calculus

We introduce and study certain quadratic Hopf algebras related to Schu-bert calculus of the ag manifold.

متن کامل

Quadratic Algebras Related to the Bihamiltonian

We prove the conjectures on dimensions and characters of some quadratic algebras stated by B.L.Feigin. It turns out that these algebras are naturally isomorphic to the duals of the components of the bihamiltonian operad.

متن کامل

Quadratic Algebras Related to the Bi - Hamiltonian

We prove the conjectures on dimensions and characters of some quadratic algebras stated by B.L.Feigin. It turns out that these algebras are naturally isomorphic to the duals of the components of the bi-Hamiltonian operad.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006